ScaRaB on-board Megha-Tropiques An end of mission review

Outline of the presentation

- I. Quick recap on ScaRab and Megha-Tropiques
- 2. Highlights of the mission
 - I. Cooperation with the CERES group
 - 2. GEO ring activities
 - 3. Life cycle resolved mesoscale convective systems radiative properties
- 3. Conclusions

ScaRaB/3

22 kg, 52 cm width, 40 watts 4 telescopes (in red) Building on ScaRab-1 Kandel et al ScaRab-2 Duvel et al

- 2 main channels (# 2 & 3, broad band)
- 2 auxiliary channels (# 1 & 4 narrow band)
- Cross track scanning (2300 km swath)
- 40 km resolution at nadir

No VIS/IR imager

<u>ScaRaB goal</u>: To determine the longwave and shortwave outgoing fluxes observations at the TOA

Channel	Description	Spectral Interval	Filter
1	VIS (visible)	0.55 – 0.65 μm	Interferential
2	SW (or solar)	0.2 – 4 μm	Silice filter
3	T (total)	0.2 – 100 μm	No filter
4	IR (Infrared)	10.5 – 12.5 μm	Interferential

$$L_{LW (daytime)} = L_{TOTAL} - A' \times L_{SW}$$

A' depends on the spectral response of T and SW channels

ScaRaB/3 and the Megha-Tropiques mission

Thanks to the inclined orbit and altitude, ScaRaB gives

-a large swath with relatively large pixels -precessing measurements all through the diurnal cycle

A small scientific team:

Michel Viollier, Michel Desbois, Michel Capderou, Olivier Chomette, Patrick Raberanto, Sophie Cloché, Thomas Fiolleau and me

A small instrument CNES team: Alain Rosak, Nadia Karouche, Michel Dejus, JL Raynaud,...

The Megha-Tropiques mission timeline

A joint mission between ISRO and CNES

The ScaRaB record (1/2)

The ScaRaB record (2/2)

Comparisons with CERES

ScaRaB/MT → inclinaison 20°, demi-fauchée: 48.9° - XT mode CERES/TERRA → inclinaison 98.2°, demi-fauchée: 55.2° - XT mode

NASA activates the programmable mode of CERES for each crossings during the campaign

Comparisons with CERES

L1: CERES & ScaRaB are in good agreement. → biais ≈2.5% in SW, with error budget ScaRaB≈1.6%, CERES≈1% (at 1 σ)

+ errors brought by the colocation method > 1,5%

L2: D. Doelling warned us about a mistmatch of the definition of the Relative Azimuth Angle (RAA) between SCARAB and CERES (180° shift) but due to the flip manoeuver it is true only part of the time!

This has been fixed

ScaRaB and the georing

Spectral normalization and calibration corrections of the $\mathsf{Tb}_\mathsf{GEOS}$ by using the SCARAB

observations onboard Megha-Tropiques

- SCARAB-IR Channel 4 : [10.5μm 12.5 μm]
- Temporal stability over the period

MET7 MSG1 MSG3 MSG4

GOES13 GOES16 HIMA08

Quarterly

Newsletter- Winter 2020 Issue

CMA · CNES · ESA · EUMETSAT · IMD · ISRO · JAA · JMA · KMA · NASA · NIST · NOAA · ROSCOSMOS . ROSHYDROMET · SITP · USGS · WMO

In this Issue

Articles

Using ScaRaB on board Megha-Tropiques to investigate the calibration of geostationary thermal infrared channels for cold cloud studies

By Thomas Fiolleau and Rémy Roca, Laboratoire d Etudes en Géophysique et Océanographie Spatiales/CNRS, Toulouse, France

The Copernicus Imaging Microwave Radiometer Mission (CIMR)
By C. Donlon, ESA/ESTEC

Using ScaRaB on board Megha-Tropiques to investigate the calibration of geostationary thermal infrared channels for cold cloud studies

By Thomas Fiolleau and Rémy Roca

Py4CAtS: PYthon for Computational

Radiative properties of MCS along their life cycle

AUGUST 2021 BOUNIOL ET AL. 1091

Life Cycle-Resolved Observation of Radiative Properties of Mesoscale Convective Systems

DOMINIQUE BOUNIOL, a RÉMY ROCA, THOMAS FIOLLEAU, AND PATRICK RABERANTOC

OLR: life cycle

Albedo: LT and then life cycle

Care for regional budget

Conclusions

ScaRaB-3 on Megha-Tropiques has come to an end:

10 years + of high quality TOA broad band radiances measurements and flux estimates on a precessing orbit

Highlights of science results

Cross-Validation of CERES and SCARAB dataset within their respective instrumental uncertainty budget

Use for the GEORING calibration

Permit the characterization of the life cycle resolved radiative properties of the MCS : actually a science objectif from 2003!

More to it: science results from India

A long running (and much appreciated) companionship with the CERES team

A long running (and much appreciated) companionship!

